Limits of Learning in Incomplete Networks

Timothy LaRock

larock.t@husky.neu.edu

In collaboration with

Timothy Sakharov

Sahely Bhadra

Tina Eliassi-Rad

Supported by NSF CNS-1314603 & NSF IIS-1741197

1

Background: Incomplete Networks

- Network data is often incomplete
- Acquiring more data is often expensive and/or hard
- Research question: Given a networked dataset and limited resources to collect more data, how can you get the most bang for your buck?

Two general approaches to network completion

Don't collect more data	Collect more data
Northeastern University	

Two general approaches to network completion

Don't collect more data	<u>Collect more data</u>
Assume a network model	
Combine network model with incomplete data to get a model of the network structure	
Infer missing data from this model	
 [Kim et al. 2011] [Chen et al. 2018] 	

Northeastern University Network Science Institute

Two general approaches to network completion

Don't collect more data

Assume a network model

Combine network model with incomplete data to get a model of the network structure

Infer missing data from this model

- [Kim et al. 2011]
- [Chen et al. 2018]

Northeastern University Network Science Institute <u>Collect more data</u> Estimate Statistics from partially observed network

- [Soundarajan et al. 2015]
- [Soundarajan et al. 2016]

Utilize an explore-exploit approach

- [Pfeiffer III et al. 2014]
- [Soundarajan et al. 2017]
- [Murai et al. 2018]
- [Madhawa et al. 2018]
- This work!

Our solution: Network Online Learning (NOL)

- Research Question: Given a networked dataset and limited resources to collect more data, how can you get the most bang for your buck?

- Learn to grow an incomplete network through sequential, optimal queries (to some API)
- Agnostic to both *data distributions* and *sampling method*
- Interpretable features that are computable online

Assumptions

We assume...

We know the API access model (complete vs incomplete queries).

The underlying network is static (probing the same node twice gives no new information).

We do not assume...

A model of the underlying graph.

How the initial sample was collected.

Network Online Learning (NOL)

Example reward function:

_

number of new nodes observed _

NOL algorithm

Output: θ (parameters of the learning model), \hat{G}_b (network after *b* probes)

1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$

2: repeat

- 3: $\phi_t(i), \forall \text{ node } i \in \hat{V}_t P_t \{\text{Calculate feature vectors}\}$
- 4: $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards}
- 5: With probability p, choose node $u_t \in \hat{G}_0 P_t$ uniformly at random. {Explore}

6: With probability 1 - p, $u_t = argmax_i\theta_t^{\mathrm{T}}\phi_t(i)$, where $i \in \hat{V}_t - P_t$ {Exploit}

- 7: Probe node u_t
- 8: Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{ neighbors of } u_t}$
- 9: Collect reward $r_t = |\hat{G}_{t+1}| |\hat{G}_t|$
- 10: Online $loss_t = (r_t \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$
- 11: Compute on-line gradient $\nabla_{\theta_t} loss_t = -2 (r_t \mathcal{V}_{\theta_t}(\phi(u_t)) \phi_t(u_t))$
- 12: Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$
- 13: Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{\|\theta_{t+1}\|_2}$
- 14: $t \leftarrow t + 1$
- 15: **until** t==b
- 16: **return** θ_b and \hat{G}_b

Input: \hat{G}_0 (initial incomplete network), *b* (probing budget), *p* NOL algorithm **Output:** θ (parameters of the learning model), \hat{G}_{h} (network after *b* probes) 1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$ repeat $\phi_t(i), \forall \text{ node } i \in \hat{V}_t - P_t \{ \text{Calculate feature vectors} \}$ 3: Observe the current state $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards} random. {Explore} With probability 1 - p, $u_t = argmax_i \theta_t^T \phi_t(i)$, where $i \in$ Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{ neighbors of } u_t}$ Collect reward $r_t = |\hat{G}_{t+1}| - |\hat{G}_t|$ Online $loss_t = (r_t - \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$ Compute on-line gradient $\nabla_{\theta_t} loss_t$ $-2\left(r_t - \mathcal{V}_{\theta_t}(\phi(u_t))\phi_t(u_t)\right)$ Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$ Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{||\theta_{t+1}||_2}$ $t \leftarrow t + 1$ 15: **until** t==b 16: **return** θ_b and \hat{G}_b Northeastern University

Network Science Institute

11

Input: \hat{G}_0 (initial incomplete network), *b* (probing budget), *p* NOL algorithm **Output:** θ (parameters of the learning model), \hat{G}_{h} (network after *b* probes) 1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$ repeat $\phi_t(i), \forall \text{ node } i \in \hat{V}_t - P_t \{ \text{Calculate feature vectors} \}$ 3: Observe the current state $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards} random. {Explore} With probability 1 - p, $u_t = argmax_i \theta_t^T \phi_t(i)$, where $i \in$ Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{ neighbors of } u_t}$ Collect reward $r_t = |\hat{G}_{t+1}| - |\hat{G}_t|$ Online $loss_t = (r_t - \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$ Compute on-line gradient $\nabla_{\theta_t} loss_t$ $-2\left(r_t - \mathcal{V}_{\theta_t}(\phi(u_t))\phi_t(u_t)\right)$ Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$ Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{||\theta_{t+1}||_2}$ $t \leftarrow t + 1$ 15: **until** t==b 16: **return** θ_b and \hat{G}_b Northeastern University

Network Science Institute

NOL algorithm

Input: \hat{G}_0 (initial incomplete network), *b* (probing budget), *p*

Input: \hat{G}_0 (initial incomplete network), *b* (probing budget), *p* NOL algorithm **Output:** θ (parameters of the learning model), \hat{G}_{h} (network after *b* probes) 1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$ 2: repeat $\phi_t(i), \forall \text{ node } i \in \hat{V}_t - P_t \{ \text{Calculate feature vectors} \}$ Observe the current state $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards} With probability *p*, choose node $u_t \in \hat{G}_0 - P_t$ uniformly at Choose the next action With probability 1 - p, $u_t = argmax_i \theta_t^T \phi_t(i)$, where $i \in$ $\hat{V}_t - P_t$ {Exploit} 7: Probe node u_t Take action, update network, 8: Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{neighbors of } u_t}$ collect reward 9: Collect reward $r_t = |\hat{G}_{t+1}| - |\hat{G}_t|$ Online $loss_t = (r_t - \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$ gradient $\nabla_{\theta_t} loss_t$ $-2\left(r_t - \mathcal{V}_{\theta_t}(\phi(u_t))\phi_t(u_t)\right)$ Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$ Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{||\theta_{t+1}||_2}$ $t \leftarrow t + 1$ 15: **until** t==b 16: **return** θ_b and \hat{G}_b Northeastern University

Network Science Institute

15

Input: \hat{G}_0 (initial incomplete network), b (probing budget), p NOL algorithm **Output:** θ (parameters of the learning model), \hat{G}_{h} (network after *b* probes) 1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$ 2: repeat $\phi_t(i), \forall \text{ node } i \in \hat{V}_t - P_t \{ \text{Calculate feature vectors} \}$ Observe the current state $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards} With probability *p*, choose node $u_t \in \hat{G}_0 - P_t$ uniformly at Choose the next action With probability 1 - p, $u_t = argmax_i \theta_t^{\mathrm{T}} \phi_t(i)$, where $i \in$ $\hat{V}_t - P_t$ {Exploit} Probe node u_t Take action, update network, Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{ neighbors of } u_t}$ collect reward Collect reward $r_t = |\hat{G}_{t+1}| - |\hat{G}_t|$ Online $loss_t = (r_t - \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$ 10: on-line Compute gradient $\nabla_{\theta_t} loss_t$ 11: = $-2\left(r_t - \mathcal{V}_{\theta_t}(\phi(u_t))\phi_t(u_t)\right)$ Update parameters Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$ 12: Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{\|\theta_{t+1}\|_2}$ 13: $t \leftarrow t + 1$ 14: 15: **until** t==b 16: **return** θ_b and \hat{G}_b

Northeastern University Network Science Institute

Input: \hat{G}_0 (initial incomplete network), b (probing budget), p NOL algorithm **Output:** θ (parameters of the learning model), \hat{G}_{h} (network after *b* probes) 1: Initialize: θ_0 (randomly or heuristically); $P_0 = \emptyset$ 2: repeat $\phi_t(i), \forall \text{ node } i \in \hat{V}_t - P_t \{ \text{Calculate feature vectors} \}$ Observe the current state $\mathcal{V}_{\theta_t}(\phi_t(i)) = \theta_t^{\mathrm{T}} \phi_t(i)$ {Calculate estimated rewards} With probability *p*, choose node $u_t \in \hat{G}_0 - P_t$ uniformly at Choose the next action With probability 1 - p, $u_t = argmax_i \theta_t^{\mathrm{T}} \phi_t(i)$, where $i \in$ $\hat{V}_t - P_t$ {Exploit} Probe node u_t Take action, update network, Update the observed graph $\hat{G}_{t+1} = {\hat{G}_t \cup \text{ neighbors of } u_t}$ collect reward Collect reward $r_t = |\hat{G}_{t+1}| - |\hat{G}_t|$ Online $loss_t = (r_t - \mathcal{V}_{\theta_t}(\phi_t(u_t)))^2$ $\nabla_{\theta_t} loss_t$ gradient $-2\left(r_t - \mathcal{V}_{\theta_*}(\phi(u_t))\phi_t(u_t)\right)$ Update parameters Update parameters $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta_t} loss_t$ Normalize parameters $\theta_{t+1} = \frac{\theta_{t+1}}{||\theta_{t+1}||_2}$ $t \leftarrow t + 1$ 15: **until** t==b 16: **return** θ_b and \hat{G}_b Repeat until budget depleted

Northeastern University Network Science Institute

NOL algorithm

Features

Features

Feature: In-sample degree

Feature: In-sample clustering coefficient

Feature: Normalized size of connected component

Feature: Fraction of probed neighbors

Feature: Lost Reward

$$\phi_{\mathbf{i},\mathbf{4}} = LostReward_i$$

Key idea: The order in which we probe nodes can impact the reward they yield.

Feature: Lost Reward

$$\phi_{\mathbf{i,4}} = LostReward_i$$

Key idea: The order in which we probe nodes can impact the reward they yield.

Unobserved node (potential reward for u **or** v)

Partially observed nodes

Research Question: Given a networked dataset, and limited resources to collect more data, how can you get the most bang for your buck?

- Potential bang for your buck **depends on network structure!**

Learning not useful

Heuristics optimal

Learning not useful

Potential for learning

Heuristics optimal

31

Learning	not
useful	

Potential for learning

Heuristics optimal

Homogeneous degree dist.

Learning	not
useful	

Potential for learning

Heuristics optimal¹

Homogeneous degree dist.

Heterogenous degree dist.

¹Avrachenkov et al. INFOCOM WKSHPS (2014)

Learning not	Potential for	Heuristics
useful	learning	optimal ¹
Homogeneous degree dist.	Heterogenous degree dist. with rich structure	Heterogenous degree dist.

¹Avrachenkov et al. INFOCOM WKSHPS (2014)

Experiments

Heuristic Baselines

- High degree
 - Probe the unprobed node with maximum degree
- High degree w/ jump
 - Probe the unprobed node with maximum degree, randomly jump with probability p
- Low degree
 - Probe the unprobed node with minimum degree
- Random
 - Probe a node chosen uniformly at random from the unprobed nodes

iKNN-UCB [Madhawa+ ArXiv preprint, 2018]

- K-Nearest Neighbors Upper Confidence Bound
 - Nonparametric multi-armed bandit approach
- Choose node to probe by combining nearest neighbor reward information (based on Euclidean distance between feature vectors) + extent of previous exploration of similar actions

Learning not	Potential for	Heuristics
useful	learning	optimal
Homogeneous degree dist.	Heterogenous degree dist. with rich structure	Heterogenous degree dist.

Learning not	Potential for	Heuristics
useful	learning	optimal
Homogenous degree dist.	Heterogenous degree dist. with rich structure	Heterogenous degree dist.

Learning not useful	Potential for learning	Heuristics optimal
Erdos-Renyi Model	Heterogenous degree dist. with rich structure	Heterogenous degree dist.

¹C. Seshadhri et al. *Physical Review E* (2012) $_{41}$

¹C. Seshadhri et al. *Physical Review E* (2012) 4

Potential for Learning not **Heuristics** Optimal useful learning Erdos-Renyi **Barabasi-Albert BTER Model** Model Model Average Cumulative Reward NOL(p = 0.3) $KNN(k=20)-UCB (\alpha = 2.0)$ High+Jump - High Random Low Ò 1000 2000 3000 4000 5000 Number of Probes

Learning Not	Potential for	Heuristics
Useful	learning	Optimal
DBLP	Cora	Enron
Coauthorship	Citation	Email Communication
network	network	Network
N = 6.7k	N = 23k	N = 36.7k
E = 17k	E = 89k	E = 184k
△s = 21.6k	△s = 78.7k	△s = 727k

Summary

- Network Online Learning can learn to probe online with minimal assumptions
- Success is tied to properties of the underlying network:
 - Spectrum based on objective function being maximized (degree distribution in these experiments)
 - NOL can learn to behave like the optimal heuristic
- Preliminary experiments suggest some real world complex networks fall in the "learnable" category

Thanks!

Tim LaRock larock.t@husky.neu.edu

References

Kim et al. (2011). The Network Completion Problem: Inferring Missing Nodes and Edges in Networks. *SIAM International Conference on Data Mining*.

Seshadhri et al. (2012). Community structure and scale-free collections of Erdos-Renyi graphs, *Physical Review E*.

Avrachenkov et al. (2014). Pay few, influence most: Online myopic network covering. *Proceedings - IEEE INFOCOM*.

Pfeiffer III et al. (2014). Active Exploration in Networks: Using Probabilistic Relationships for Learning and Inference. In *Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management*.

Soundarajan et al. (2015). MaxOutProbe: An Algorithm for Increasing the Size of Partially Observed Networks. *The 2015 NIPS Workshop on Networks in the Social and Information Sciences*.

Soundarajan et al. (2016). MaxReach: Reducing network incompleteness through node probes. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

Soundarajan et al. (2017). ε-WGX: Adaptive Edge Probing for Enhancing Incomplete Networks. In *Proceedings of the 2017 ACM on Web Science Conference*.

Murai et al. (2018). Selective Harvesting Over Networks. *Data Mining and Knowledge Discovery.*

Madhawa et al. (2018). Exploring Partially Observed Networks with Nonparametric Bandits. arXiv:1804.07059.

Chen et al. (2018). Flexible Model Selection for Mechanistic Network Models via Super Learner. arXiv:1804.00237.

Slides at http://eliassi.org/larock_netsci18.pdf